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In order to study gravitational collapse of a star leading 1o the formation of a super nova
or a black hole and consequent emission of gravitational radiation, we have developsd 2
numerical method to solve 3D partial differential equations in a sphere with various boundary
conditions. We present the numerical method which is based on spectral analysis and
application to the solutions of 3D wave equations and to the solutions of gas dynamics
equations for pertinent cases. ' 1990 Academic Press. Inc.

1. INTRODUCTION

In a previous paper {11, we described a numerical method for the solution of
compressible hydrodynamics in spherical symmetry. Density and velocity were
expanded in Chebychev polynomials series. The choice of speciral method was
suggested by their ability to treat correctly any kind of bounary conditions. by their
accuracy in the computation of spatial derivatives and by their ability tc handie
shock waves [ 1, 2].

Our aim being the study of gravitational wave during the collapse of a star, we
had to build a code to solve 3D gas dynamic and wave equations. Let us recall that
the physics of collapse can be 3D if the initial conditions have no symmetry or if
a spontaneous symmetry breaking occurs. Moreover, it is well known thar a spheri-
cal collapse does not give rise to emission of gravitational waves [3] and that the
gravitational energy emiited by an axisymmetric collapse is too weak to be detected
even by the nexi generation of gravitational waves detectors [4]. We thersfore
present a generalisation of our previous work to solve 3D gas dynamics and wave
equations in spherical coordinates.

We have chosen to solve the equations in a “spherical-type” (sphericai or
ellipsoidal} coordinate system because of the reguiarity of the boundary surface
associated with such a coordinates system and because of the simplicity of the
matching of an internal solution with the corresponding external analytical one.
Each quantity g(r, 6, @) is expanded in Fourier series for the longitudinal part, in
Chebychev and/or Legendre polynomials series for the azimuthal part and in
Chebychev polynomials series for the radial part. The method we present here
allows us to handle rigorously the pseudo-singularities » =0 and 6 =0, 7 tyvsical of
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the “spherical-type” coordinates without artificial boundary conditions on these
singular points.

In Section 2 we present in detail the basis of our method. We show how it is
possible to remove the pseudo-singularities difficulty in taking into account the a
priori known analytical properties of any tensorial physical quantities. Moreover,
this technique leads to a numerical grid well adapted to the geometry and to an
improvement of the accuracy of the solutions.

Application of this method to the resolution of wave equation for various
boundary conditions is presented in Section 3. In Sectiond, we describe an
axisymetric and a 3D self-gravitating hydro code and give some results obtained in
the solution of the gas dynamics equations.

2. THE METHOD

In what follows, we assume that the basis of spectral methods in numerical
computation is known. The reader not familiar with these techniques can find a
description of their principles and their mathematical development in Gottlieb and
Orszag [57 or in Canuto er al. [6], and an application to the study of spherical
gravitational collapse in Ref. [1].

Let us consider a function f(1,r 8, @), with re[0,r,], 0€[0, 7], and
@ [0, 2r]. Under very weak restrictions, f can be expanded in a Fourier series:

o

f(,r6,0)=Y a,ltr 0)e™. (1)
m=0
Now, each coefficient a,(z, r, 0) is expanded in a series of independent functions
F'/‘(r): G[(B), namel}Ia

an(t.r )= S au(0) E,(r)G,(8). )

j=0 [=0

Usually, the family G,(8) is chosen to be the associated Legendre functions P7"(6).
Another choice for the set G, could be Chebychev polynomials 7, which have some
advantages (Fourier expansion cannot obviously be used because of the Gibbs
phenomenon at the bounds of the interval due to the non-periodicity of the
function).

Spherical harmonics

Y’,"(H, (P) d=ef Prln(g)eiﬂw) (3)

are eigenvectors of the angular part of the Laplacian operator. This property allows
easy inversion of this operator which appears in a lot of physical equations (par-
ticularly in the D’Alembertian operator and in the viscous terms of hydrodynamics
equations). However, until now, from a numerical point of view. the Legendre
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transformation is performed by a product of a vector by a matrix which needs o #'*
operations, N being the number of the grid points, while the Chebychev transfor-
mation needs oc N log N operations, since these transformations are executed by
using a fast Fourier transformations algorithm. The efficiency of one of these
methods with respect to the other depends on N and on the computer. We have
chosen 1o expand the azimuthal part of the quantities in Chebychev polynomials of
the first and second kinds. However, for the inversion of the Laplacian operator in
3D, we use an associated Legendre functions expansion 1n which the coefficients are
computed from the Chebychev expansion coefficients by means of matrix mujti-
plications. For the radial part, we have chosen the set F,{r} to be the Chebychev
polynomials.

Consider now spectral expansions using Chebychev poiynomiais. A naive way to
proceed is to seek an approximaticn of f(1. r, 8, ¢). £, . say, of the form

froadt, i, 6, @)=

‘l! ™M~

M A
2 z jln \,)T ‘l// ‘l(ifIM}gImQa éd’k’
=0 m=0

where T,(4,} and T,(f,) are defined as

T y=cos(jy,), with 1 —2u=cosy,. ¥, el0 7]

4

. 20
Tdrgy=cos(lbfy). with 1 ——=cosy,, V,el0 n], {
7

where we have introduced the dimensionless variable u lying in the range [0, 2.

The sampling grid associated with such an expansion is shown in Fig. ia, ¥, and
/o being uniformly sampled. Let us recall that uniform sampling for the above
variables must be used if FCT (fast Chebychev transforms) are employed.
Moreover, the above grid corresponds to the zeros of the last Chebychev polyno-
mial retained in the expansion and then it leads 1o an optimal accuracy of the
coraputation of the coefficients ay, (see, e.g., [7]). The “pseudo-singularities” =0
and §=0, n are treated by means of analytical continuation of the operators at
these points. (See, for instance, an application of this method for the resolution of
relativistic hydrodynamics around a Kerr Black Hole in Ref [81.) As can be seen
in Fig. la, these sampling points are concentrated near the polar 2xis and near ‘he
centre of the grid. It could be interesting to exploit this peculiarity in some
particular problems (when high gradients of the solution are expected near this axis
and/or near the centre of the grid), but, generally speaking, this accumulation of
points is rather a disadvantage.

A way to overcome this difficulty is to take into account the known anaiytical
properties of the solutions. Let us first remark that any function of the form

A

K L
2 Y Z By’ cOS* O sin' Ge™@ (6}
=0 (=0

Y k

fir, 0

T

=

581/87/1-14
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is not necessarily regular (consider for instance the simple case f= cos ¢, where f
is a multi-valued function on the axis 8 =0).

If / is a regular scalar function (i.e., in the context of the spectral approximation,
f€%?), f may be expanded as

fr0,0)=33 ) au &, (7)
i ok

where &, &, z is a complex coordinate system related to the usual Cartesian one by
E=x+1y
{=x—1Iy

with
x=rsin 6 cos @
y=rsinfsin ¢ (8)

z=rcosf.

Taking account of the above relations, the expression (7) for f can be rewritten as

F(r,0,0)=Y33 a,r™ 7" sin”*¥ 0 cos* G, 9)

j k m

where m=i—j.
It can be seen from (9) that if m is odd then

St ) =33 dy, ™Y F sin™ ¥ 0 cos® 0=, (r, sin 6) (10)
Jj ok
and if m is even then
Sonlr, 8)=f,(r, cos 8). (11)

Therefore we expand f,,(r, &) in first kind Chebychev polynomials T,(8)=cos(/8)
for m even and in second kind Chebychev polynomials 7'}(8) =sin(/8) for m odd:

f2m+1(r’ 6):2bl,2m+l(r) SIH([H) (12)
/
and
Sanlrs 0) =3 by 2lr) cos(10). (13)

In a similar way, it can be noticed from (9) that the coefficients 4,,(r) are even/odd



3D COMPRESSIBLE HYDRODYNAMICS PAt

polynomials for the even/odd values of /, respectively. The coefficients b, are than
expanded as

o
Lo

bll, m(r) = Z bZ!,Zl,m TZI(r} i :
and
b2[+1,m(r)=zb2i+l,2/+k,m 75 air), {15;
i

the Chebychev polynomials T(r) being those defined by Eq.(5), bur, taking
account of the known parity, the dimensionless variable u lies now in the range
[0, 1], corresponding to ,e[n/2, n]. The sampling points associated with this
method of expansion is represented in Fig. tb. Note that the above grid points are
almost uniformly distributed along the radii near the centre of the box, while, {o-
the naive sampling, the distance between two consecutive points near the centre is
of order 1/N?, N being the number of points in the r-direction. The same conclusicn
holds for the 6-distribution. Finally, note that the coefficients b,,, behave as
r*sin”§. This regularity property can be used in particular problems where colioca-
tion is not necessary [97], however, in the general case. roundoff errors arising in
computations when the number of degrees of freedom (in each direction) is greater
than ~20 forbid the use of this property. We have chosen to expand the quantities
on Galerkin basis such that the coefficients b, ,, behave as #* for / even and zs
for 7 odd. The same constraint is applied to the longitudinal part.

FiG. i, {a) Naive sampling associated to the expansion defined by Eqs. (4} and (5). The numbers o
degrees of freedom are 7 for r, 7 for 0, and 6 for ¢. Note the condensation of points near the cenire r =0
and near the axis 6 = 0. 7. (b) Smart sampling associated to the expansion defined by Egs. (12:4i3). The
numbers of points represented in this figure are the same as in Fig. 1a. This distribution of the grig
points is more adapted to the geometry than in Fig. la. Note that the concentration of points in the
#-direction near the boundary of the box improves the uniformity in the volume distribution.
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3. WaAvE EQuUAaTION

As an application of the numerical method described in the previous section let
us consider the solution of the 3D scalar wav equation in flat space:

@_?_2_([_1+E§_([_'+1 62‘I/+c0508¥’ 1 é? 16
e~ or* "rar P2\ 36> " sin6 0 _sin"@% (16)
for various initial and boundary conditions.

The calculations presented below were performed for the following reasons:

— having in mind to solve general relativistic stellar collapse, numerical
solution of wave equation with outgoing-waves boundary conditions will give
precious information on the stability of the temporal scheme.

—- the D’Alembertian operator being a second-order operator both in space
and in time directions for which analytical solutions are known, a numerical
solution would provide a good test of the method.

-—— moreover, an expansion in Chebychev polynomials series requires that one
treats the Laplacian operator implicitly both in the solution of the wave equation
and in the treatment of the viscous part of the hydrodynamics equations in order
to avoid excessively small time step (see [5]).

3.1. Laplacian Inversion

As has been explained in the previous section, quantities are generally expanded
in Chebychev polynomials for the radial and the azimuthal parts. However, the fact
that Legendre polynomials are eigenvectors of the Laplacian can be advantageously
used in the case of the inversion of this operator. We have developed two kind of
routines to invert the Laplacian operator. The first one is used to invert the
Laplacian for quantities expanded in Chebychev polynomials in both the radial and
the azimuthal part in 2D axisymetric problems. The second one is used to invert the
Laplacian for full 3D quantities which are expanded in Chebychev polynomials for
the radial part, in associated Legendre functions for the azymutal part and in
Fourier series for the longitudinal part.

The capacity of the super-computers allows one to perform numerical 2D calcula-
tion using an average number of degrees of freedom, say 1024 x 1024 while a 3D
calculation cannot be reasonably performed with more than 150 x 40 x 40 points. It
then follows that in the 2D case, computation of associated Legendre functions
expansion is very time consuming (such a transformation needs oc N* operations),
while in the 3D case, this time becomes less important with respect to the time
needed for the whole calculation.

The method we use to compute the associated Legendre functions expansion, to
invert the Laplacian in practice and to treat boundary conditions, are given in
detail in Appendix A.
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3.2. Temporal Scheme

We first solved the 3D scalar wave equation in using the natural second-order
temporal scheme,

LA LA

{28 1/ cosh @ N

— — ———— s ¢1/+1
3 <a-3+;-a,+ (@92+sin666 sin? 6;’(,0 )

1 8> 28 1/¢* cosf o TGN )
L dr? R T S ——— L A
T (arﬁr 8r+r2<602+sin936 S 0307 ) L

where ¥/ denotes the value of ¥ computed at the time /.

This scheme has been used with various initial and boundary conditions. We
found that it is unconditionally stable for the boundary conditions ¥(1, 8, ¢ = C°*
{here and from now on r runs in the range {0, 1]). One of these calculatiors s
presented in Fig. 2.

A most interesting application for our purpose is to solve the wave equation with
outgoing wave boundary conditions:

o o)

+ 2~
ot ér |,_, '

e 9]

After second-order time discretization, the outgoing wave boundary conditions ca
be expressed as

i+ 1

3Pt 424 =4y il {

D

[

cr

We discovered that the previous numerical scheme is unconditionally stable for the
even /. where ! is the azimuthal quantum number (Egs. (12)}-{13}), while it becomss
unstable for the odd / when the time step becomes too small for a given number
of degrees of freedom or, conversely, when the number of degrees of freedom is too
small for a given 4r. (The same kind of instability arises also for the boundary
condition 0¥/dr|,_, =0.) Note that this instability does not arise in calculations
with equatorial symmetry.

In order to understand this strange behaviour, which appears either with
Chebychev and associated Legendre functions expansion for #, we considered the
system,

¥

_—=— vy AY

it ¢ o
ou i
= — AP
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FiG. 2. Time evolution of a 3D stationary wave. The initial condition is an eigenfunction of the
Laplacian. The figures represent the m =0 mode evolution of the wave during one period.
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It is to be noted that in the case v =0 this system is equivalent to the wave equaiion
and, moreover, that this system corresponds to the linearised compressibie fluid
dynamics equations in which the velocity v satisfies v=grad ¥

A second-order temporal scheme can be

: . dt
o :lP»’—fg(U»’*HL UY) v (4% + 4¥)

v,
()
s

. d ;
Uit = UJ..{_—‘?—[(A(P’+1+A(P'J).

Afier elimination of /%! in the first equation, we obtain

o dt i\ .
Wil =Wl g Uf+%(v+%{)(z!‘!”“+é¥”’)
\ =/

[P

) . dr
U1+1=Uf—7(A‘I’“‘+A‘F’}-

The first equation is solved implicitly for ¥, while the second egquation gives the
value of U at the time /! by means of the computed value of ¥ at the time +'*"
The boundary conditions are imposed in the first equation. We found the same king
of instability for v=10.

For practical purposes, this instability can be removed with 2 not too large cosf-
ficient of viscosity v. Finally, bearing in mind that the outgoing wave boundary
conditions as expressed in Eq. (18) is an asymptotic one, smali reflections must
arise at the boundary of the numerical grid. Such a small viscosity v damps the
reflected part of the wave,

In order to give an explanation of this instability, let us describe the
phenomenon. Consider a run for which the initial conditions are such that the
energy of the wave is concentrated near the centre of the box. Observation of
the time evolution of the wave shows that, when the wave reaches the boundary,
2 boundary layer seems to arise for the antisymetric part {ie., for the odd value
of ). The thickness of this layer depends on the vaiue of the coefficient (v + 41/2}
which appears in front of the Laplacian in Eq. (22).

If the number of degrees of freedom is not large enough to describe the layer. an
instability arises. However, at the present time, we do not understand why this
instability appears only for the odd values of . Note that the number of degrees of
freedom for the r-expansion is odd for even values of [ and even for odd values
of /. Maybe this is the reason for the above behaviour.

A run for the propagation of waves with outgoing wave boundary conditions i
presented in Fig. 3.
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Fic. 3. Time evolution of a 3D scalar wave with outgoing boundary conditions during two crossing
times. These figures represent ¥(1,r, 0, ¢) |, _o. Note a small reflection of the wave near the boundary.
This reflection is not a numerical one, but is due to the fact that the outgoing boundary condition is
asymptotic.

4. HYDRODYNAMICS EQUATIONS

We recall that, for the reasons already explained in Section 1, we are obliged to
use a numerical grid such that its boundary is a smooth, regular, and convex suz-
face having the topology of the sphere. In this case, it is always possible to reduce
this surface to a sphere by means of an appropriate coordinate transformation. We
will then consider in what follows a spherical numerical box, the physical quantities
being described with respect to the usual spherical coordinate system (r, 0, ¢J.

The coordinate system being now chosen, it remains to choose the way to
describe the physical quantities. Tt is to be noticed that a scalar quantity is
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everywhere a single-valued function, while the components of a tensor can be multi-
defined functions on some part of the space if tensors are decomposed on a singular
tensorial basis. This remark holds for the case of the components of a vector field
with respect to the natural triad associated to the spherical coordinates system.
Consider for instance a vector field v. Writing v as
¢ é ¢
v=vxé;+ U),aﬁ- U:E

=v,e,+vgep+0,€,, (23)

where (e, €4, €,) is the canonical orthonormal triad associated to the spherical
coordinates, it can be easily seen that the §- and the p-components of v are multi-
valued function of (r, 8, @) on the axis =0, =. However, if the vector field v is
regular, these components have to satisfy on the axis the regularity conditions

Ly =COS QU+ sin v,

) ’ (24)
v, = —SIn QU+ COS YV,.
Note that this trouble arises worthly at the origin r=0.

Even if it is possible to treat this kind of singularity in taking account of the
above regularity conditions (see, e.g., Ref. [8]), a better way to overcome this dif-
ficulty is to express the tensorial physical quantities by means of their components
with respect to a regular triad (for instance, the cartesian one) considered as scalar
functions of r, #, and ¢. The choice of the triad must be determined in function of
each particular case as it will be illustrated below. The same choice has been made
for the same reasons by the Japanese group [10].

4.1. 3D Code

4.1.1. General Considerations

The quantities used in this code are the mass density p, the three cartesian
components v, v,, v. of the velocity v and the gravitational potential @ expressed
with respect to the spherical coordinate system.

The equations to be solved are the momentum conservation

av; av, ov; ov, 1
T o, Ty, 0, S =0, P8, +v vy, (25)
ot Tox oy oz p

where i = x, y, z, the mass conservation equation,

dp _ dlpr,) dlpv,) élpuv,)

ar éx oy oz (26)
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and the Poisson equation,

~

A

3

~3

AD = —4nGp,

where P= P(p) is the pressure and G is the gravitational constani. The method to
solve the Poisson equation is described in Appendix.

The dissipative terms are written in the form v Av,. We want to emphasize that
these are not the correct dissipative term since the entropy production terms are
not positive definite. The correct contribution would be (&/p) dv, +(1/3)0,div vy &
being the dynamical viscosity which is supposed to be independent of 5.

We use the first form of the dissipative terms for simplicity and because we are
not interested at the present time in the entropy production. These terms are usad
only in order to smooth shocks. At the present time, the code uses a constant {in
space and time)} numerical value of v, which is high enough to spread cut t
shock on about three grid points. For physical applications, we shall use a viscou
coefficient function of space and time analog to the so-called artificial viscosity
used by most of the finite differences codes. However, in a realistic physical situa-
tion, the correct dissipative terms would have to be considered. This introduces a
complication due to the coupling of Navier-Stokes equations via the bulk viscosity
rerms. This difficulty may be overcome by simultaneocusly solving all velocity
components. Such a scheme has been coded for the case of 3D gas dynamics with
periodic boundary conditions. It was found that the code is stable for any vaiue
ot

&

n
et

w

.
Note that, for this problem, spectral methods need viscosity. This is not a
weakness of the method, but rather corresponds to a physical reality. Methods that
do not need viscous terms can work only because an undercontrolled hidden
intrinsic viscosity is present.

It i5 to be noticed that the equations written in this form hide the wrou
spherical coordinate singularities. For instance. the simple operator ¢/¢x reads

¢ : ¢ | A i ¢ e
—=sin § cos ¢ —+ cos § cos ¢ —— —sin ¢ —— —. {28
{x cr r of rsin 6 o

Even though ¢/0x is regular, some operators of the rhs. of the previous relation
are not. The singularities appear in the evalvation of (L/r}(d/68) and of
(Lirsin 8)(&8/Ce}. However if O is a € class function. @ has to satisfy the regularity
conditions

a ¢ i ¢ . 80N
F§=r<c059cosgoE%)ntcosﬂsmq)TQf——st g; AN
and
fa . S 0 ¢ s
TQz(rsmO)(—sm(p ﬂQ~:—cosw ,Q\E {333
o Ox vy )

/
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which ensure that numerical evaluation of the previous terms gives a finite value.
Note that our formalism in expanding scalar quantities takes into account these
regularity properties. Another critical point arises from the fact that each one of the
three operators which appear in ¢/0x applied to a scalar function Q is no more a
function in the sense that it is multi-valued on the axis #=0, =. Nevertheless

£ tlancon dlbivan .o — 1 ~ 1 PSR o P PR N S,

Qgy=cos’ ¢ cos’ 0, and Q,=sin’ @. It is obvious that, on the axis, Q, and Q,, are
multi-defined, but that Q, + Q,+ @, is regular.

Consequently, from a numerical point of view, all these three terms cannot be
computed independently.

4.1.2. Finite Difference Temporal Scheme

We use a second-order scheme in which the source and the advective terms are
treated explicitly and the dissipative terms implicitly. Each of the quantities that
appear in the r.h.s. of the equations are computed at the time #/* ! except for the
Laplacian terms that are treated implicitly. More precisely, div pv, which appears in
the mass conservation equation, and the quadratic terms v - grad v, are computed
by extrapolation of their values at the times #/ and #/~". Conversely, the force terms
(1/p)é,P and 0,® are computed by interpolation from their values at the times ¢/
and #/*!. This means that the conservation equation has to be solved before the
other ones.

The temporal scheme then reads:

, 3 1 :
pﬁl=p1—dr<;divpv’—5diVPV”1>’ (31)
P12 1 J+1 J 2

p/ ":E(p +p ): (3b)

@/ = 4G4 It 33

220 12 P(pj+ 1/2)’ ‘34)

. . 3 o1
v{“=v{+dt><<—§v-gradv{+§v-gradv{."l

1

_—pj+1,2

o ) 1 .
8,—P’+1'2——8,-<P’”2+5v(Av{.+‘+Au{)). (35)

If the dissipative terms are writen in an exact way, the modifications introduced
in the momentum conservation equation impose a semi-implicit treatment of the
Laplacian. The previous numerical scheme has then to be modified as
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1 1 ) \\j+12
(l— (AU,--%—@,U,,I",, :\
P P min 3 :’/

AN

¢4+ = v/ 4+ dr Source + dt

S

2 R SN A b ‘.
+ dt (—(Au{“%—dv{)—g Y o&v,+8 Y cna;“z}. (36

.Umm Nl

The boundary conditions are imposed on the components of the velocity v, «,.
v, by using the t-approximation [11]. The code is able to treat any boundary
condition of the form

-
7"

alt) S+ Bit)e, = (2. 0, ),
or

e
L
~d

where 1 =x, v, -. Note that it is not possible to treat in a direct way & boundary
condition of the type

or , .
alt, 8,(p)—5%+ﬂ(t, B, oy, =710, @) {38

However, with a small complication, it is possible to tackle the kind of boundary
conditions written in equation (38) applied to the spherical components v,, vy, ¢,
of the velocity. Note that, for our present purpose, such a complication can be
avoided.

4.2. “2.5D” Code

4.2.1. General Considerations

We call “2.5D™ code a code able to handie axisymetric configuration with
rotation around the axis of symmetry. Of course, this is a particular case that could
be treated by the 3D code, but, it will then result in a waste of computaticnal time
because this code cannot obviously take into account the symmetries of the
problem. Recall that, even some quantities (e.g., g, [v]. ..} do not depend on e,
other unknown functions (e.g., v,.v,, v.) depend on r, 0, and o.

For axisymetric caiculations, we will then keep the spherical coordinate system
to describe the scalar quantities, but, to expand the vector fields, we choose another
triad of vectors which takes into account the symmetries. We have chosen the
canonical orthonormal triad associated with the cylindrical coordinates syster:.
Writing ¢ v. the components of the velocity with respect to this triad, we have

pr Uos

v, =¢C0s @r, +sin @,

Lad
D

v, = sin Qv , — cos @i,

v.=0v..
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Introducing the operators V,, V_, and A

ms

¢ 13
V —sing 1a ,
, smHar—l-coeraB, (40)
¢ sinf ¢
V.= f——"— —
. =C0S$ 5 ey (41)
and
p __('i+g_éi_+i<62+c0506 m? "
"o rdr P2\00°  sin0d0 sin’6) (42)
the hydrodynamics equations read
ov, V Vo v? 1V
o —(v, pUp T, "U”)—rsineﬁ_; pP—Vﬂ¢+"Alup’ (43)
v v
Etﬂz —(v,,vaQ,+u_.V_.vw)—rS"in"’g—l-vdlvw (44)
v ) !
== _(Uﬂvpuz+UZV:U:)_—VZP-’_VAOU;U (45)
ot 0
P o (Vtpr,) 4L 4V () (46)
or P T Ging T P )
&= —4nGA; p, 47)
P=P(p). (48)

It is to be noticed that the components v, and v, are the component of v with
respect to a singular triad. It then follows that these components are muilti-defined
functions and, as can be seen from relations (39), that these quantities must be
expanded in the O-direction as 3, a1, r) sin /6. Moreover, the evolution equation
for v, is linear. It is then possible to solve it without the need of viscosity

4.2.2. Finite Difference Temporal Scheme

In order to ensure that the numerical scheme used in the 3D code is stable, the
time-step has to satisfy the condition

1 1
dr < Min (————, ———-), (49)
lvbl N~ ll)maxl N

where N is the number of degrees of freedom in the r-direction, v, is the radial com-
ponent of the velocity at the boundary, and v,,,, is its maximum value [5]. Note
that the relation (49) is verified for large values of N, but for small values (N < 65)
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and for the particular case in which we are interested, the stability criterion is
satisfied for

dr o Mi ( : L itk

i o in ] {OCF

e 1.23 ) > .
‘.,l:hxl N ivmaxi J\'I/V

{see Fig. 4). It is then obvious that, when the number of points becomes large, as
can be the case for the 2.5D code, this condition becomes prohibitive. The way 1o
overcome this unpleasant fact is to treat the operators semi-implicitiy.

Let us consider each term of the r.hs. of Eq. {(42). The terms that may cause
trouble are those in which ¢/6r appear because of the concentration of points near
the boundary and the terms in which (1/r){¢/06) appears since, near the centre of
the box, these operators behave as 8%/érd0.

The first class of terms mentioned above must be treated in a semi-implicit way
because of the Chebychev expansion, while the same kind of treatment mus: be
applied to the second one too because of the use of the spherical coordinate system.
Below we review all these terms that appear in the evolution equation of v, and
give the corresponing temporal scheme we use.
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The semi-implicit scheme is

v) =0l +dt

' dp it
X (— [(up sin 0+ wv_cos 0 —ay(z, 0) —o,(2, 0)r —ay(z, 8)r?) Eﬁ}
N

| ) . L, op, !
“I:ao([, O)+ay (2, 8)r+as(t, 9)’")TE]
2 or

cos 0oy i1z )2 (i
o "
rooor rsin 6

05 J+ 12
#| .-y 252 |

1 sinf év, Pt 1 sin 6 ¢v
e AN~ ae}

1<sin6c_3+cos(9 8)
p or rp 06

>
where each quantity at the time j+ [ is computed implicitly and each quantity
written at the time j+ 1/2 is computed explicitly either by extrapolation from its
value at the times j and j— 1 or by interpolation from its values at the times j and
J+ 1. The same kind of treatment holds for the v,,, v_, and p equations of evolution.

The functions a,(z, 8) are chosen in such a way that the advective terms vanish
at the boundary » =1 following the regularity rules. The function f(¢) is chosen in
such a way that f=v, |,_, (note, that, according to the regularity rules, v, does not
depend on § at r=0. Recalling that v, and v, vanish at r=0, it follows that
vl /I sin 6 and (v, cos 0/1)(617 /60) are not dangerous)

(P 4+ PI)+5 4, (&) el ), (51)

/

"Ekum;a{:ol = startad in tha Avansacin

EeY
PAVAES U] JAN ] UV J AAANUY U SAA T A MR AL VAW WIAPOAAAUAN AL WS WAAAWASAALL

space for both r and 6. On the other hand, the operator (eq(8) + ro,(0) + r?05(6))
(8/0r) cannot be, because of the dependence of the «; on 6. This operator must then
be inverted in the coefficient space for r and in the physical space for 8. To over-
come this difficulty, the integration in time can be performed usng a generalisation
of ADM (alternating direction method, see, e.g., Ref. [12]). The pressure terms at
the time j+ 1 are treated in the same way as shown in Section 3 for the wave
equation (Egs. (21)-(22)).

4.3. Numerical Results

A 2.5D hydrodynamics calculation, without gravitational field, is presented in
Figs. 5. The initial conditions are

P(’o, F, 6) = Cste’
v,(tg, r, N =10.(ty, 7, 8)=0, (52)

v,(tg, 1, 8) = o,
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with the boundary conditions
v,(t, 1,0)=v.(1,1,0)=0. (53)

In this case, the viscous coeffcient which appears in the v,-equation of evolution
was set to zero.

It can be seen that the matter first tends to go outside the box and is reflected
on the boundary of the box. After this first reflection, a soft shock begins to form
(Fig. 5). The evolution of the mass and of the z-component of the angular momen-
tum (which in this case have to be conserved) are represented in function of time
in Fig. 5b and c. This calculations used a 33 x 33 numerical grid points and was
executed on the VAX-8600 of the Observatoire de Meudon. The CPU time per time
step is 2.56s.

In order to test our codes, we performed the same run with the 3D code. This
run gave the same result within the roundoff errors, namely, 10 ~° for a calculation
in single precision.

5. CONCLUSION

We have described in this paper a numerical method for solving 3D and 2D
systems of partial differential equations in a “spherical-type” coordinate system by
means of a spectral expansion. Our method takes into account the analytical
properties of the physical quantities.

Applications to the resolution of 3D wave equation and Newtonian hydro-
dynamics are shown. Each quantity is expanded in Fourier series for the
longitudinal part in Chebychev polynomials of the first or second kind or
associated Legendre functions for the azimuthal part and in even or odd Chebychev
polynomials for the radial part, the associated Legendre function expansion being
used only in the 3D case to invert the Laplacian operator.

Moreover, we have shown that, with an appropriate decomposition of the vector
fields, it is possible to avoid the difficulties attached to the spherical components of
the vector fields.

The actual capacity of the super-computers does not allow to use more than a
hundred points in each direction for the 3D case while it allows a thousand points
in each direction for the 2D case. On the other hand, stability of an explicit tem-
poral scheme for first-order derivatives requires.for the time step to be of order
1/N* where N is the number of degrees of freedom in the r-direction and where
ax 1.2 for N<65 and a =2 for N> 65. Consequently, it is not necessary to treat
the first-order derivatives in an implicit (or semi-implicit) way when the number of
points is less than 100. On the contrary, the high number of degrees of freedom
allowed in the 2D case imposes that one treat the first-order operators in a semi-
implicit way. We have then developed a semi-implicit finite difference temporal
scheme for the 2D case and an explicit one, except for the diffusive terms which are
treated implicitly, for the 3D case.



A

3D COMPRESSIBLE HYDRODYNAMICS 225

Application of these methods to the study of gravitational radiation emission
during a 3D supernova collapse in the post-newtonian approximation by using &
formalism developed by Blanchet er al. [13] is in progress. Another application will
be the study of post-newtonian collapse with magnetic fields in order to model
magnetic field in pulsars and neutron stars and possible bipolar jets.

The codes presented in this paper have been developed and tesied on the VAX-
8600 of the Observatoire de Paris, section de Meudon, as the 2.5D runs. Some of
the 3D runs have been executed on the VP-200 of the Centre Interrégional de
Calcu! Electronique (Orsay).

APPENDIX A

t. Associated Legendre Functions Expansion and Inversion
of the Laplacian Gperator in 3D

Our method is based essentially on the expansion of physical guantities in
Chebychev polynomials for the radial and the azimuthal parts. However, to mvert
the Laplacian operator in the 3D case, we used an expansion in spherical
harmonics.

In order to get the Legendre coeflicients, we first compute the expansion in
Chebychev polynomials of first or second kind according to the parity of the
longitudinal number m. The associated Legendre function expansion coefficients
are then computed from the Chevychev expansion cocfficients by a matrix multi-
plication.

Let A™ be the transformation matrix between associated Legendre functions #7
and Chebychev polynomials T, expansion for a given m. This matrix is computed
by using a Chebychev expansion of the associated Legendre function,

[y

N
Plx)= Z AT Ax}, Al

n=0

where x =cos 0, T,(x) = cos nd for even vaiues of m and x=sin 6. 7, {x)=sin af for
odd values of m. The inverse matrix B” is obtained by computing

A1
Br=| T,x)P7(x)dx. ,1
1

;;:,
[

This integral is evaluated in Chebychev coefficients space by using recurrence
relations. Note that this technigue is much more efficient (in computing time as i
accuracy) than a technique consisting of inverting the matrix A™.

The quantities being developed in spherical harmonics

o
Lad

Q(rf 65 QD)= Z le(‘r) }”[”(67 (/))-

Lm
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the Laplacian operator applied to the coefficients Q,,.(r) reads

(AQ)IIﬂ: Allea

where
d*> 2d ll+1)
Aj=—+-——= .
drtrar r? (A4)
Our problem consists of solving the system
le(r) —dt A,le(l’) = Sourcelm(r" (AS)

If the quantitics Q,,(r) and Source,,(r) are expanded in Chebychev polynomials,
the previous problem consist of solving an algebraic linear system of equations for
the expansion coefficients Q,,, and Source,,, which are defined by

le(l') = Z Qilm Ti(r)7
i (A.6)
Source,, =Y Source,, T, (r),
where i=2p or i=2p+ 1 accordingly to the parity of /. We are thus led in the
construction and in the inversion of two kinds of matrices.

1.1. [ Even

We have to distinguish two different cases /=0 and /#0. In the case /=0, 4,
reads
d* 2d

do=—=+=2
0 dr2+rdr

(A.7)
Consequently, 44(7;(r)), where T;(r) is an even Chebychev polynomial (i even), is
well defined. The matrix of the operator 4, is obtained by

(4o)y= Ty, 45(T}) ), (A.8)

where (., -) denotes the usual scalar product associated to Chebychev polyno-
mials.

However, for /#0, it can be seen from (A.4) that 4, applied to a Chebychev
polynomial T, diverges at r=0 and, consequently, that the matrix (A.8) is not
defined. This is due to the fact that, as it has been explained in Section 2, the coef-
ficients Q,, have to vanish at r=0 for />0. Taking into account this regularity
property, according to the Galerkin approximation, we develop the quantities on a
new set of independent polynomials P;(r) which vanishes at r =0. We have chosen
the set P,(r) to be

Pir) =T, (r)—T;(r). (A.9)

Such a new basis will be call hereinafter a Galerkin Basis.
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The matrix of the operator A, is computed as

o,
(o]

{.A[)!/': <T[> A[(P/>>

-

The system to be solved then reads

P
b
[y

z (Izj - dt(Al)y) Q»/lm = Sourcei{m%
j

where [, is the transformation matrix between the Chebychev and Galerkin basis

1.2. 7 Odd

Two diiferent cases /=1 and /# | appear for / odd toc. Recalling, that for i odd,
7;{r) vanishes at »=0, it can be seen that the operator 4, applied 1o 7, gives a
finite value for /= 1. Consequently, the matrix

is well defined.

However, for />3, (4,),=(T,.4,(P,))> is not defined. So, in analogy to the
[-even case, the quantities Q,, have to be expanded on a Galerkin Basis of odd
polynomials satisfying P;(0)=0 and dP,/dr|,_,=0.

The boundary conditions are introduced by means of the t-approximation. This
approximation consist of replacing the last line of the matrix 4, by the line of

coefficients @u\'—dCtﬂmmgd_m_su‘ch awav that -
14
Y 5,0m=(B.C.},, (A3
7=9
is satisfied.

From a practical point of view, it should be noticed that the operator 4, can be
reduce to a 7-band matrix by means of very simple algebraic manipulations. For
that, we need a number of operations proportional (o /.

2. Inversion of the Laplacian in the 2D Case

For the reasons explained in Section 3.1, the 2D quantities are expanded in
Chebychev polynomials for the azimuthal part even in inverting the Laplacian.
These polynomials being not eigenvalues of the Laplacian. a more tricky method
for inverting this operator has to be developed.

Note first that two different operators appear, namely,

) (A.14)

AO:

+ ju— -
~ D R
ér rér o r

& 28 1/cosf & cos@
(sin@ ¢’ sin6ad)
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for the scalar-type quantities, which are expanded in first kind Chebychev polyno-
mials (cos /) for the azimuthal part, and

=il (A.15)
cr ror

0> 29 l/cosB_Fa'2 cosf) & 1
2(sin@ 80> sin® o0 sin%0

for vector-type quantities which are expanded in second kind Chebychev polyno-
mials (sin /0). Note that the above definitions differ from those of the 3D case. In
what follows, we will describe how we invert 4,, the method used to invert 4,
being almost the same.

The problem is to solve the system

(1 +dt (% +—15 @)) QO(r, 8} =Source(r, 8), (A.16)
¥
where
2 20
%zdtx(a +———) (A.17)
For
and
1 /fcos8 ¢&* cos@ 0 ,
- = — ) A.18
© d”‘(Z( 9+862+sin969>> (A.18)

After expansion of the quantity Q(r, ) in Chebychev polynomials for 0, Eq. (A.16)
becomes

[(1+3?)5,,,1+Qr§5:|Q,,(r)=Source,(r), (A.19)

or, in matricial notation,
(0 touaj + A A4) Q1 = SoUICE, (A.20)

where @, is the matrix of the operator @ in Chebychev representation.
The task of solving this system can be greatly facilitated by using the properties
of @,,. The linear combination

@I.nﬂ@l+2,n (A21)

reduces the matrix @ to a 2-band matrix, the only non-vanishing elements being
A4;=0,,and B;=0,,,,.
The system (A.19) then reads

<1+Z+ >Q,(r)+(1,+1,5?+ )Q,+1(I)—S,(r) (A22)



3D COMPRESSIBLE HYDROD YNAMICS 225

where [, and S, are the elements of the representation of the identity matrix and the
scurce terms after the linear combination (A.21).

The system of equations is solved by a descending recursion. The last equation
reads

Ay

2
I3

(1 + R+ )Q,‘(r):sl_m {A.23)

where L is the maximum value of I This equation has the same structure as
Eq. (A4) and can be solved by means of the same technigque. Once {2, is known,
¢, _, s computed and so on.

Note that the method described above can be generalised to more complicated
operators such as, for instance, the 3D Laplacian or the operator 4, —
{sin 8/r)}(/08) which appears in Eq. (51).

3. Solution of the Poisson Eguation

Once the density has been expanded in spherical harmonics,

p(r, 6, 0) =} p(r) Y7(6. ¢).

the coefficients of the gravitational potential &, (r) must satisfy the Poisson
equation

/d*> 24 [{I+1 )
Q7+—T—‘z))axm=—%&mwz (A.24)
dre  rdr r

and the boundary conditions @ — 0 as r — ou. In our case, the boundary conditions
have to be imposed at r=1. Consequently, we have to find an internal solution
matching an external one which satisfies the boundary conditions at infinity. Nots
that, in our case, the external solution is a vacuum selution.

We first find a particular internal solution &, by inverting the Laplacian in
Eq. (A.24) with the technique as described above. The general solution is
P =P, + d,. where we have assumed @y =0 for r > 1 and where @, is a2 harmonic
function which has the coefficients

(Po) i = ‘9‘/"[; rel0 1],
and

B,

(ﬁﬁh)/m:;m; rell, . {4

r}\r
i~
[
<

We then determine the coefficients x; and f, in such a way that & is C'-class.
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