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In order IO study gravitational collapse of a star leading to the formation of a super nova 
or a biack hole and consequent emission of gravitational radiation, we have develop::! a 
numerical method to solve 3D partial differential equations in a sphere wi?h various bounderl; 
conditions. We present the numericai method which is based on spect:ai analysis and 
app!ication to the solutions of 3D wave equations and to the sa!utions of gas dyr.amics 
equations for pertinent cases. C’ 1990 Academc Pxss. Ioc. 

1. INTRODUCTIOY 

Tn a previous paper [I], we described a numerical method for the soiution of 
compressible hydrodynamics in spherical symmetry. ensity and velocity were 
expanded in Chebychev polynomials series. The choice of spectral method was 

suggested by their ability to treat correctly any kind of bounary conditions. by thei: 
accuracy in the computation of spatial derivatives and by their ability tc handie 
shock waves [I, 21. 

Our aim being the study of gravitational wave during the collapse of a star, we 
had to build a code to solve 3D gas dynamic and wave equations. Let us recall that 
the physics of collapse can be 3D if the initial conditions have no symmetry or if 
a spontaneous symmetry breaking occurs. Moreover, it is well known thai a spher!- 
ca! collapse does not give rise to emission of gravitational waves [3] and that ?!E 
gravitational energy emitted by an axisymmetric collapse is too weak to be detected 
even by the next generation of gravitational waves detectors 141. We therefore 
present a generalisation of our previous work to solve 3D gas dynamics and w2~;e 

equations in spherical coordinates. 
We have chosen to solve the equations in a ~‘s~her~~a~-ty~e” (spherical or 

ellipsoidal) coordinate system because of the regularity of the boundary surface 
associated with such a coordinates system and because of the simphcity of rhe 
matching sf an internal solution with the corresponding external analytical one. 
Each quantity Q(r, 8, cp) is expanded in Fourier series for the !ongitudinal part, in 
Chebychev and/or Legendre polynomials series for the azimuthal part and in 
Chebychev polynomials series for the radial part. The method we present here 
allows us to handle rigorously the pseudo-singularities I’ = 0 and B = 0, 5: typical of 
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the “spherical-type” coordinates without artificial boundary conditions on these 
singular points. 

In Section 2 we present in detail the basis of our method. We show how it is 
possible to remove the pseudo-singularities difficulty in taking into account the a 
priori known analytical properties of any tensorial physical quantities. Moreover, 
this technique leads to a numerical grid well adapted to the geometry and to an 
improvement of the accuracy of the solutions. 

Application of this method to the resolution of wave equation for various 
boundary conditions is presented in Section 3. In Section 4, we describe an 
axisymetric and a 3D self-gravitating hydro code and give some results obtained in 
the solution of the gas dynamics equations. 

2. THE METHOD 

In what follows, we assume that the basis of spectral methods in numerical 
computation is known. The reader not familiar with these techniques can find a 
description of their principles and their mathematical development in Gottlieb and 
Orszag [S] or in Canuto et ul. [6], and an application to the study of spherical 
gravitational collapse in Ref. [l]. 

Let us consider a function f(t, I’, 0, q), with YE [O, r6], do [0, ~1, and 
rp E [0, 27~1. Under very weak restrictions, f can be expanded in a Fourier series: 

f(t,r.&cp)= g a,Jt, r, t3jei”‘q. (1) 
,n = 0 

Now, each coefticient a,(t, I’, 0) is expanded in a series of independent functions 
Fj(r), GAO), namely, 

Usually, the family G,(O) is chosen to be the associated Legendre functions P?(0). 
Another choice for the set G, could be Chebychev polynomials TI which have some 
advantages (Fourier expansion cannot obviously be used because of the Gibbs 
phenomenon at the bounds of the interval due to the non-periodicity of the 
function). 

Spherical harmonics 

Y;n((j, cp) 2 P;“(e)ei’n9 (3) 

are eigenvectors of the angular part of the Laplacian operator. This property allows 
easy inversion of this operator which appears in a lot of physical equations (par- 
ticularly in the D’Alembertian operator and in the viscous terms of hydrodynamics 
equations). However, until now, from a numerical point of view. the Legendre 
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transformation is performed by a product of a vector by a matrix which needs YA” 
operations, N being the number of the grid points, while the Chebychev transfor- 
mation needs KN log N operations, since these transformations are executed by 
using a fast Fourier transformations algorithm. The efftciency of one of these 
methods with respect to the other depends on N and on the computer. We hai~e 
chosen to expand the azimuthal part of the quantities in Chebychev poiynomiaia of 
the first and second kinds. However, for the inversion of the Eapiacian operator in 
3D; wc use an associated Legendre functions expansion in which the coefiicicnts are 
computed from the Chebychev expansion coefficients by means of matrix multi- 
plications For the radial part, we have chosen the set F,(r) to be the Chebyctev 
polynomia?s. 

Consider now spectral expansions using Chebychev poiynomials. .A na.ive way to 
proceed is to seek an approximation of f(t. I’, 8, ip )> _f,,_, say, of the form 

where T;(~l/~j and T,(+,) are defined as 

T;(ll/,-I= cos(.jqJ,j. with I - 2~ = cos $__ 111,. E [IO, X] 

and 

where we have introduced the dimensionless variable u lying in the range CO, 21. 
The sampling grid associated with such an expansion is shown in Fig. ia. q/y a.nd 

it? being uniformly sampled. Let us recall that uniform sampling for the above 
variables must be used if FCT (fast Chebychev transforms) are employed 
Moreover, the above grid corresponds to the zeros of the last Chebychev polyno- 
mial retained in the expansion and then it leads to an optimal accuracy of the 
ccmputation of the coefficients cljIn, (see, e.g., [7] i, The ~‘pseudo-si~gu~arit~e~‘~ 7. = 0 
and B = O? IT are treated by means of analytical continuation ‘of the operators at 
these points (See, for instance, an application of this method for the resolution of 
relativistic hydrodynamics around a Kerr Black Hake in Ref. [8].) As can be seen 
in Fig. la, these sampling points are concentrated near the polar axis and near ihe 
centre of the grid. It could be interesting to exploit this peculiarity in s0m.e 
particular problems (when high gradients of the so?ution are expected near this axis 
andior near the centre of the grid), but, generally speaking, this accumulation of 
points is rather a disadvantage. 

A -way to overcome this difficulty is to take into account the known anaiytical 
properties of the solutions. Let us first remark that any function of the form 

581i8i’l.14 
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is not necessarily regular (consider for instance the simple case f = cos q, where f 
is a multi-valued function on the axis e=O). 

Iffis a regular scalar function (i.e., in the context of the spectral approximation, 
J’E %‘“‘), f may be expanded as 

(7) 

where 5, 5; z is a complex coordinate system related to the usual Cartesian one by 

with 

x = Y sin 0 cos rp 

y = r sin 0 sin q (8) 

7 = r cos 0. 

Taking account of the above relations, the expression (7) for f can be rewritten as 

~f(r,~,~)=~~~a~~mrm+2iiksinn’CY~coskOeim’~, 
j k m 

(9) 

where nr = i -j. 
It can be seen from (9) that if m is odd then 

fm(~,~~:=~~a~,~“f2~~ksinm+2iB~osk~=f,(r,sine) 
j k 

(10) 

and if m is even then 

jJr, 0) = ji(r, cos 0). (11) 

Therefore we expand .fJr, 0) in first kind Chebychev polynomials T!(0) = cos(l0) 
for m even and in second kind Chebychev polynomials T:(8) = sin(M) for 112 odd: 

h,,+ l(r, 0) = C b2,+ Lrj sin(W 

and 

f2,,Ar, Q = C b,,2,,(r) cos(lQ). 

(12) 

(13) 

In a similar way, it can be noticed from (9) that the coefficients b,,(r) are even/odd 
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polynomials for the even/odd values of 1, respectiveiy. The coefficients bb,? are then 
expanded as 

the Chebychev polynomials Tijr) being those defined by Eq. (5), but, taking 
account of the known parity, the dimensionless variable L: Iies now in the ra2ge 
[0, l], corresponding to tire [x/2, n]. The sampling poinis associated with &is 
method of expansion is represented in Fig. lb. Note that the above grid points are 
almost uniformly distributed along the radii near the centre of the box, while, for 
the naive sampling, the distance between two consecutive points near the cer?tre is 
cf order I/N’, N being the number of points in the r-direction. The same conc’i&~ 
holds for the O-distribution. Finally, note that the coefficients bl,,, behave as 
#sirP 0. This regularity property can be used in particular problems where cokca- 
tion is not necessary [9]. however, in the general case. roundoff errors arising in 
computations when the number of degrees of freedom (in each direction) is greater 
than -20 forbid the use of this property. We have chosen to expand the quantities 
on Gale&in basis such that the coefficients !I[.,,, behave as if’ for I even and 2s r” 
for i odd. The same constraint is applied to the iongitudinal part. 

Fr;. 1. \a) Naive sampling associated to the expansion defined by Eqs, (4; and (5). The numbers 0” 
degrees of freedom are 7 for r, 7 for 8, and 6 for cp. Note the condensation of points near the cenitre r = C 
znd near the axis 0 = 0. I[. (b) Smart sampling associated to the expansion defmed by Eqs. ( i2)-( ! 5 ). The 
numbers of points represented in this figure are the same as in Fig la. This distribution of the g~i:~ 
poinrs is more adapted to the geometry than in Fig. la. Ncte that the concemration of poinfs in rhc 
;-direction near the boundary of the box improves the uniformity in the volume distribution. 
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3. WAVE EQUATION 

As an application of the numerical method described in the previous section let 
US consider the solution of the 3D scalar wav equation in flat space: 

ii2Y S’Y 2 a!P 1 

( 

d2Y cos %lJ!P 1 a2 
T=dr’+;-&+;;;; -T+------ d%- 7 sin 8 a% sin” 8 6~’ (16) 

for various initial and boundary conditions. 
The calculations presented below were performed for the following reasons: 

- having in mind to solve general relativistic stellar collapse, numerical 
solution of wave equation with outgoing-waves boundary conditions will give 
precious information on the stability of the temporal scheme. 

-- the D’Alembertian operator being a second-order operator both in space 
and in time directions for which analytical solutions are known, a numerical 
solution would provide a good test of the method. 

- moreover, an expansion in Chebychev polynomials series requires that one 
treats the Laplacian operator implicitly both in the solution of the wave equation 
and in the treatment of the viscous part of the hydrodynamics equations in order 
to avoid excessively small time step (see [ 51). 

3.1. Laplacian Inversion 

As has been explained in the previous section, quantities are generally expanded 
in Chebychev polynomials for the radial and the azimuthal parts. However, the fact 
that Legendre polynomials are eigenvectors of the Laplacian can be advantageously 
used in the case of the inversion of this operator. We have developed two kind of 
routines to invert the Laplacian operator. The first one is used to invert the 
Laplacian for quantities expanded in Chebychev polynomials in both the radial and 
the azimuthal part in 2D axisymetric problems. The second one is used to invert the 
Laplacian for full 3D quantities which are expanded in Chebychev polynomials for 
the radial part, in associated Legendre functions for the azymutal part and in 
Fourier series for the longitudinal part. 

The capacity of the super-computers allows one to perform numerical 2D calcula- 
tion using an average number of degrees of freedom, say 1024 x 1024 while a 3D 
calculation cannot be reasonably performed with more than 150 x 40 x 40 points. It 
then follows that in the 2D case, computation of associated Legendre functions 
expansion is very time consuming (such a transformation needs cc;cN’ operations), 
while in the 3D case, this time becomes less important with respect to the time 
needed for the whole calculation. 

The method we use to compute the associated Legendre functions expansion, to 
invert the Laplacian in practice and to treat boundary conditions, are given in 
detail in Appendix A. 
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3.2. Temporal Scizem 

We first solved the 3D scalar wave equation in using the natural second-order 
temporal scheme. 

where Yyi denotes the value of !P computed at the time i’. 
This scheme has been used with vari.ous initial and boundary conditions. ‘dde 

found that it is unconditionally stable for the boundary conditions “v(1, 8, (i-1) = Csre 
(here and from now on I’ runs in the range (IO, l]), One of these calculations is 
presented in Fig. 2. 

A most interesting application for our purpose is to solve the wave equation ih,i’;h 
outgoing wave boundary conditions: 

After second-order time discretization, the outgoing wave boundary conditions can 
be expressed as 

-We discovered that the previous numerical scheme is unconditionally stable for the 
even I. where i is the azimuthal quantum number (Eqs. ( 12 1-I 13 ))? while it becomes 
unstable for the odd I when the time step becomes too small for a given number 
of degrees of freedom or, conversely, when the number of degrees of freedom is too 
small for a given dt. (The same kind of instability arises also for the boundary 
condition c?!P,/~?r I,.=! = 0.) Note that this instabihty does not arise in calculations 
with equatorial symmetry. 

In order to understand this strange behaviour, which appears either with 
Chebychev and associated Legendre functions expansion for 0, we considered :he 
system, 
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FIG. 2. Time evolution of a 3D stationary wave. The initial condition is an eigenfunction of the 

Laplacian. The figures represent the rn = 0 mode evolution of the wave during one period. 



1: is to be noted that in the case v = 0 this system is equivalent to the wave equaimn 
and, moreover, that this system corresponds to the hnearised compressibie fkd. 
dynamics equations in which the velocity Y satisfies v = grad Y”. 

A second-order temporal scheme can be 

After elimination of L:‘+‘ in the first equation, we obtain 

The first equation is solved implicitly for ‘P3 while the second equation gives the 
value of CT at the time r-‘+ ’ by means of the computed value of !P at 3~ rime r ’ ’ ’ 
The boundary conditions are imposed in the first equation. We found the snn~ kkr! 
Of ikXfObiliij' far \’ = 0. 

For practical purposes, this instability can be removed with a not too Large coei- 
ficient of viscosity 1’. Finally, bearing in mind that the outgoing wave boundary 
conditions as expressed in Eq. (18) is an asymptotic one, smaii reflections must 
arise at the boundary of the numerical grid. Such a small viscosity 1’ damps the 
reffected part of the wave. 

In order to give an explanation of this instability, Set us describe the 
phenomenon. Consider a run for which the initial conditions arc such thaf the 
energy of the wave is concentrated near the centre of the box. Observation of 
the time evolution of the wave shows that, when the wave reaches the boundar~~, 
a boundary layer seems to arise for the antisymetric part [i.e., for the odd v-alues 
of i ). The thickness of this layer depends on the value of the coefficient (v + ~212) 
which appears in front of the Laplacian in Eq. (22). 

If the number of degrees of freedom is not large enough to describe the layer. an 
instability arises. However, at the present time, we do not understand why this 
insrabihry appears only for the odd values of !. Note that the number of degrees of 
freedom for the r-expansion is odd for even values of i and even for odd va?ues. 
of i, Maybe this is the reason for the above behaviour. 

A run for the propagation of waves with outgoing w ave boundarv con 
presented in Fig. 2. 
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FIG. 3. Time evolution of a 3D scalar wave with outgoing boundary conditions during two crossing 

times. These figures represent Y(t, r, 6, q) lyzO. Note a smaii reflection of the wave near the boundary. 

This reflection is not a numerical one, but is due to the fact that the outgoing boundary condition is 

asymptotic. 

4. HYDRODYNAMICS EQUATIONS 

e recall that, for the reasons already explained in Section I, we are obhged to 
use a numerical grid such that its boundary is a smooth, regular, and convex sur- 
face having the topology of the sphere. In this case, it is always possible to re 
this surface to a sphere by means of an appropriate coordin 
will then consider in what follows a spherical numerical box, e physical q~a~t~~~~s 
being described with respect to the usual spherical coordinate system (r, 0, cp): 

The coordinate system being now chosen, it remains to choose the way to 
describe the physical quantities. It is to be noticed that a scalar 



212 BONAZZOLA AND MARCK 

everywhere a single-valued function, while the components of a tensor can be multi- 
defined functions on some part of the space if tensors are decomposed on a singular 
tensorial basis. This remark holds for the case of the components of a vector field 
with respect to the natural triad associated to the spherical coordinates system. 

Consider for instance a vector field v. Writing v as 

= v,e, + ueee + v,e,, (23) 

where (e,, es, e,) is the canonical orthonormal triad associated to the spherical 
coordinates, it can be easily seen that the 6- and the cp-components of v are multi- 
valued function of (Y; 0, cp) on the axis 0 = 0, 7~. However, if the vector field v is 
regular, these components have to satisfy on the axis the regularity conditions 

ve = cos ccp~‘.~ -t sin ‘pv, 
(24) 

uq, = -sin VL’.~ + cos qf.?. 

Note that this trouble arises worthly at the origin I’ = 0. 
Even if it is possible to treat this kind of singularity in taking account of the 

above regularity conditions (see, e.g., Ref. [g]), a better way to overcome this dif- 
ficulty is to express the tensorial physical quantities by means of their components 
with respect to a regular triad (for instance, the Cartesian one) considered as scalar 
functions of Y, 0, and cp. The choice of the triad must be determined in function of 
each particular case as it will be illustrated below. The same choice has been made 
for the same reasons by the Japanese group [lo]. 

4.1. 30 Code 

4.1.1. General Considerations 

The quantities used in this code are the mass density p, the three Cartesian 
components u,, u,, _ ZI- of the velocity v and the gravitational potential @ expressed 
with respect to the spherical coordinate system. 

The equations to be solved are the momentum conservation 

avi au, aui au. 1 

ar - ax 01’ 
- -L’,--vv?.,-vz --LA- 

az p 
aiP - ai@ + 1’ nuj, 

where i = x, ~9, z. the mass conservation equation, 

aio d(p,) Qc,,) ?(pu, j 
!r= --- 

-- 
ax ?l az ’ (26) 
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and the Poisson equation, 

where P= P(p) is the pressure and G is the gravitational constant. The method to 
solve the Poisson equation is described in Appendix. 

The dissipative terms are written in the form r dr;. We want to emphasize -ihaL 
these are not the correct dissipative term since the entropy production terms zre 
not positive definite. The correct contribution would be (t/p )(nr, f i 1!3’18, div 0’). < 
be-ing the dynamica! viscosity which is supposed to be independent oip. 

We use the first form of the dissipative terms for simplicity and because we are 
not interested at the present time in the entropy production. These terms are usz.I 
only in. order to smooth shocks. At the present time, the code uses a constant iin 
space and time) numerical value of V, which is high enough to spread out the 
shock on about three grid points. For physical apphcations, we shall use a +zVous 
coefticient function of space and time analog to the so-called ariificiai viscssity 
used by most of the finite differences codes. However, in a realistic physicai situ&- 
tion, the correct dissipative terms would have to be considered. This introduces a 
complication due to the coupling of Navier-Stokes equations viz the bulk viscosity 
terms. This dtfficulty may be overcome by sirnultaneousiy solving ai] vejocit! 

. components. Such a scheme has been coded for the case of 3D gas dynamics ~vrtn 
periodic boundary conditions. It was found that tb ,e code is sta’ble for any vrine 
or‘;. 

Note that, for this problem, spectrai methods need viscosity. This is not a 
weakness of the method, but rather corresponds to a physicai reality. Methods &at 
do not need viscous terms can -work onljr because an ~~d~~~o~tro~~ed hidden 
intrinsic viscosity is present. 

It is to be noticed that the equations written in this form hide the troub’ae of 
spherical coordinate singularities. For instance. the simple operator 8,‘;s reads 

(: ^ 1 s I 2 
-=sinOcoscpC+cosOcosip---sin+7----- 
ss ?r r ?c? .? sin 6 @’ 

Even though 23.~ is regular, some operators of the r.h.s. of the previous relation. 
are not. The singularities appear in the evaluation of (i.:r)(?jZQt and of 
( l/r sin 191(S::Fyj. However if Q is a %” class function, Q has to satisfyy the regb?iatit:i 
conditions 

3Q 
x=r cos(Icos~~+cosDsiu~~--sirii)ii_! 

( 
?Q ?Q‘\ 

- 2’ 

and 

:3 .I 1 
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which ensure that numerical evaluation of the previous terms gives a finite value. 
Note that our formalism in expanding scalar quantities takes into account these 
regularity properties. Another critical point arises from the fact that each one of the 
three operators which appear in d/irx applied to a scalar function Q is no more a 
function in the sense that it is multi-valued on the axis 0= 0, z. Nevertheless 
the sum of these three terms is a regular scalar quantity. Consider the simple 
example Q =.Y. The three operators gives rise respectively to Qr = cos’ q sin’ 0, 
Qa = cos2 cp cos2 0, and Q, = sin’ p. It is obvious that, on the axis, Qe and QV are 
multi-defined, but that Qr + Qs + QV is regular. 

Consequently, from a numerical point of view, all these three terms cannot be 
computed independently. 

4.1.2. Finite D<ffl?rence Temporal Scheme 

We use a second-order scheme in which the source and the advective terms are 
treated explicitly and the dissipative terms implicitly. Each of the quantities that 
appear in the r.h.s. of the equations are computed at the time ti+1,2 except for the 
Laplacian terms that are treated implicitly. More precisely, div pv, which appears in 
the mass conservation equation, and the quadratic terms v . grad v, are computed 
by extrapolation of their values at the times tJ and tip’. Conversely, the force terms 
(I/p)aiP and d,@ are computed by interpolation from their values at the times ti 
and tj+ i. This means that the conservation equation has to be solved before the 
other ones. 

The temporal scheme then reads: 

P j+l- j-dt -P 5 div pvj - i div pv-‘~ ’ , 

pJ+ I!? = Qp.;+ I/z), 

1 
v.gradoi+Zv.gradcjm-’ 

(31) 

(32) 

(33) 

(34) 

(35) 

If the dissipative terms are writen in an exact way, the modifications introduced 
in the momentum conservation equation impose a semi-implicit treatment of the 
Laplacian. The previous numerical scheme has then to be modified as 
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The boundary conditions are imposed on the components of the velocity i’, , :, _ 
c, by using the r-approximation [ll]. The code is able to treat any bo*-rndary 
condition of the form 

where ; = s, y, r. Note that it is not possible to treat in a direct way a boundary 
condition of the type 

owever, with a small complication, it is possible to tackle the kind of boundary 
conditions written in equation (38) applied to the spherical components c;., rii; cl0 
of the velocity. Note that, for our present purpose, such a complication can be 
avoided. 

4.2. “2.50” Code 

4.2.1. General Consideratiom 

We call ““2.5D” code a code able to handle axisymetric configuration wir.h 
rotation around the axis of symmetry. Of course, this 1s a particular case that could 
be treated by the 3D code, but, it will then result in a waste of computaticnal time 
because this code cannot obviously take into account the symmetries of the 
problem. Recali that, even some quantities (e.g., p: j/v//, . ..) do not depend on ~6~ 
other unknown functions (e.g., a,. u,., c,) depend on I’, 0. and rp. 

For axisymetric calculations, we will then keep the spherical coordinate system 
to describe the scalar quantities, but, to expand the vector fields, we choose another 
triad of vectors which takes into account the symmetries. We have chosen he 
canonical orthonormal triad associated with the cylindrical coordinates system. 
Writing L:~, i‘,, ~1; the components of the veIocity with respect to this triad, we have 

rp = cos (~1’~~ -t sin ~PL!~ 

I’, = sin cpc, - cos ~oi!,. [3g; 

c = = 1’ _ 
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Introducing the operators V,, V,, and A,,,, 

V,,=sin8~+cosQ~~, 

v-=cos eAesine a -- 
ar r ae 

and 

d,,,=$fld+l z+---- ( 
cos e d m2 

r & r’ 882 sine de sin2 e ! ’ 

(40) 

(41) 

(42) 

the hydrodynamics equations read 

1, 

%= -(il,V,c,Sv;V,L~,)-~s~~e-~v~Pv,m+vd,v,, 
at 

(431 

dV, 
T$-= -(vpvp~~g,+c,v,v,B)-~+yA1~~,p, (44) 

(46) 

CD = -4rcGA;‘p, (47) 

P= P(p). (48) 

It is to be noticed that the components op and v, are the component of v with 
respect to a singular triad. It then follows that these components are multi-defined 
functions and, as can be seen from relations (39), that these quantities must be 
expanded in the O-direction as II a[( t, r) sin IO. Moreover, the evolution equation 
for v, is linear. It is then possible to solve it without the need of viscosity 

4.2.2. Finite Difference Temporal Scheme 

In order to ensure that the numerical scheme used in the 3D code is stable, the 
time-step has to satisfy the condition 

nt-cMin ( 1 1 
(Ubl’D ’ > 

(49) 

where N is the number of degrees of freedom in the r-direction, L’~ is the radial com- 
ponent of the velocity at the boundary, and L’,,, is its maximum value [S]. Note 
that the relation (49) is verified for large values of N, but for small values (N< 65) 
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end for the particuiar case in which we are interested, the stability criterion Es 
satisfied for 

(see Fig. 4). It is then obvious that, when the ntlmber of points becomes large. 2s 
can be the case for the 2.5D code, this condition becomes prohibitive. The way t.o 
overcome this unpleasant fact is to treat the operators semi-impkitiy. 

Let us consider each term of the r.h.s. of Eq. (4Zj. The terms that may cause 
trouble are those in which c’,io’r appear because of the concentration of points near 
the boundary and the terms in which (l:‘~)(s,i&l) appears since, near rhe centre sl 
the box, these operators behave as d’/(?ri;Q. 

The first class of terms mentioned above must be treated in a semi-imp&St way 
because of the Chebychev expansion, while the same kind of treatment mus; be 
applied to the second one too because of the use of the spherical coordinate syst~~~~. 

elow we review all these terms that appear in the evolution equation of cp an-d 
give the corresponing temporal scheme we use. 

FIG d. Piot in log-log scale of the maximum time-step ~;erws the number cf degrees of free&m 
allowed to ensure numerical stability for an explicit temporal scheme for the resolution of ?J,‘?r = 
- sin s(n.‘2)~~f;~?si; z E [O. I]. This curve shosvs that dr,,, % l;r~” 2 for 5< 65 and iAmp... x 1 ,Ak.r’ for 
.v> 65. 
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The semi-implicit scheme is 
L, J’ + I = 
P v; + dt 

X 
(c 

- (I’psinB+u;cos8-a,(r-H)-a,(r,B)r-zl(t.B)r2)~ 
1 

j+ 1:2 

-; 
[ 

cl,(t, 0) + a,(t, e)r + cc,(t, O)r’) 2 
I 

j+l 

-[l!pcqs~~~~+1’2+[r~$e~+~~2 

+ i 

sin (j dv 

-2 1 
i+ I:2 

(Ll,-P(t)) I (38 

sin 0 St7 +; /3(t)---” i 
j- 1 sin 8 8v j 

r c?e 1 [ +; B(t)---2 
r de 1 

1 sin 8 (7 
( -- 

cos e 8 
-- 

2 p dr 
+ -- 

rp 28 
1 (P’+‘+P’)+frl,(v~+‘+Ll~)), 

I 
(51) 

where each quantity at the time j+ 1 is computed implicitly and each quantity 
written at the time j+ 1,‘2 is computed explicitly either by extrapolation from its 
value at the times j and j - 1 or by interpolation from its values at the times j and 
j+ 1. The same kind of treatment holds for the tjrn, u,, and p equations of evolution. 

The functions cci(t, 0) are chosen in such a way that the advective terms vanish 
at the boundary r = 1 following the regularity rules. The function P(t) is chosen in 
such a way that /I = t’z IrzO (note, that, according to the regularity rules, v, does not 
depend on 8 at r=O. Recalling that v, and L’~ vanish at r=O, it follows that 
L$r sin 8 and (v,, cos ej~)(&~J%I) are not dangerous). 

The operator d r - p(sin f3/r)(&QQ) must be inverted in the expansion coefficients 
space for both r and 8. On the other hand, the operator (a,(8) + m,(P) + r2u2(ll)) 
(a,/&) cannot be, because of the dependence of the LY; on 8. This operator must then 
be inverted in the coefficient space for r and in the physical space for 8. To over- 
come this difftculty, the integration in time can be performed usng a generalisation 
of ADM (alternating direction method, see, e.g., Ref. [ZZ]). The pressure terms at 
the time j+ 1 are treated in the same way as shown in Section 3 for the wave 
equation (Eqs. (21~(22)). 

4.3. Nunzerical Results 

A 2.5D hydrodynamics calculation, without gravitational field, is presented in 
Figs. 5. The initial conditions are 

p( fo, r, e) = C”f’, 

v,(t,, r, e) = ~l,(t,, r, e) = 0, 

~,(t,, r, e) = or, 

(52) 
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FiG. 6. Relative error of mass conservation (a) and z-components of the angular momentum (6) 
versus time, dnring the simulation presented in Fig. 5. 
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with the boundary conditions 

u&t, 1, 0) = uz(t, 1, I!?) = 0. (53) 

In this case, the viscous coeffcient which appears in the v,-equation of evolution 
was set to zero. 

It can be seen that the matter first tends to go outside the box and is reflected 
on the boundary of the box. After this first reflection, a soft shock begins to form 
(Fig. 5). The evolution of the mass and of the z-component of the angular momen- 
tum (which in this case have to be conserved) are represented in function of time 
in Fig. 5b and c. This calculations used a 33 x 33 numerical grid points and was 
executed on the VAX-8600 of the Observatoire de Meudon. The CPU time per time 
step is 2.56 s. 

In order to test our codes, we performed the same run with the 3D code. This 
run gave the same result within the roundoff errors, namely, lo-(’ for a calculation 
in single precision. 

5. CONCLUSION 

We have described in this paper a numerical method for solving 3D and 2D 
systems of partial differential equations in a “spherical-type” coordinate system by 
means of a spectral expansion. Our method takes into account the analytical 
properties of the physical quantities. 

Applications to the resolution of 3D wave equation and Newtonian hydro- 
dynamics are shown. Each quantity is expanded in Fourier series for the 
longitudinal part in Chebychev polynomials of the first or second kind or 
associated Legendre functions for the azimuthal part and in even or odd Chebychev 
polynomials for the radial part, the associated Legendre function expansion being 
used only in the 3D case to invert the Laplacian operator. 

Moreover, we have shown that, with an appropriate decomposition of the vector 
fields, it is possible to avoid the difficulties attached to the spherical components of 
the vector fields. 

The actual capacity of the super-computers does not allow to use more than a 
hundred points in each direction for the 3D case while it allows a thousand points 
in each direction for the 2D case. On the other hand, stability of an explicit tem- 
poral scheme for first-order derivatives requires.for the time step to be of order 
l/N* where N is the number of degrees of freedom in the r-direction and where 
c( x 1.2 for N Q 65 and CI 8 2 for N> 65. Consequently, it is not necessary to treat 
the first-order derivatives in an implicit (or semi-implicit) way when the number of 
points is less than 100. On the contrary, the high number of degrees of freedom 
allowed in the 2D case imposes that one treat the first-order operators in a semi- 
implicit way. We have then developed a semi-implicit finite difference temporal 
scheme for the 2D case and an explicit one, except for the diffusive terms which are 
treated implicitly, for the 3D case. 
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Application of these methods to the study of gravitational radiation emission 
during a ?D supernova collapse in the post-newtonian approximation by using e 
formalism developed by Blanchet et al. [ 13 1 is in progress. Another application cvill 
be the study of post-newtonian collapse with magnetic fieids in order to model 
magnetic field in pulsars and neutron stars and possible bipolar jets. 

The codes presented in this paper have been developed and tested on the VAX- 
8600 of the Observatoire de Paris, section de Meudon, as the 2.SD runs. Some of 
the 3D runs have been executed on the VP-200 of the Centre lnterrigional de 
Calcui Electronique (Orsay). 

APPENDIX A 

I. Associated Legendre Functions E.upansion arrd Imeuion 
Q,f the Laplflcian Operator in 3D 

Our method is based essentially on the expansion of physical quantities in 
Chebychev polynomials for the radial and the azimuthal parts. owgver, to Invert 
the Laplacian operator in the 3D case, we used an expansion in spherica? 
harmonics. 

In order to get the Legendre coefficients, we Hurst compute the expansion rn 
Chebychev polynomials of first or second kind according to the parity of {he 
longitudinal number m. The associated Legendre function expansion coefficients 
are then computed from the Chevychev expansion coeficients by a matrix m8:lti- 
phcarion. 

Let A’” be the transformation matrix between associated Legendre functions i”:? 
and Chebychev polynomials T, expansion for a given m. This matrix is comp~lted 
by using a Chebychev expansion of the associated Legendre function 

where .v = cos 6, T,,(.x) = cos ~0 for even vaiues of m and .Y = sin 8. ~J.Y) = sin i?ii for 
odd values of m. The inverse matrix B”’ is obtained by computing 

This integral is evaluated in Chebychev coefficients space by using recurrence 
relations. Note that this technique i.s much more efficient (in computing time as in 
accuracy) than a technique consisting of inverting the matrix A”‘. 

The quantities being developed in spherical harmonics 
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the Laplacian operator applied to the coefficients Q,,,>(r) reads 

where 

(A.4) 

Our problem consists of solving the system 

Q&9 - dt A,Qdr) = Source,,(r). iA.5) 
If the quantities Q,,,Jr) and Source,(r) are expanded in Chebychev polynomials, 
the previous problem consist of solving an algebraic linear system of equations for 
the expansion coefficients Qilln and Source,,,, which are defined by 

Q,ir) =C Qi, T,(r), 
i (A.61 

Source, = 1 Sourceiln, T, (r ), 

where i= 2p or i= 2p + 1 accordingly to the parity of I. We are thus led in the 
construction and in the inversion of two kinds of matrices. 

1.1. I Even 

We have to distinguish two different cases I = 0 and I # 0. In the case I= 0, d, 
reads 

(A.7) 

Consequently, d,( Ti(y)), where T,(r) is an even Chebychev polynomial (i even), is 
well defined. The matrix of the operator d, is obtained by 

MAj= (Ti, &pj))% (A.81 

where ( ., . ) denotes the usual scalar product associated to Chebychev polyno- 
mials. 

However, for l#O, it can be seen from (A.4) that d, applied to a Chebychev 
polynomial T, diverges at r =0 and, consequently, that the matrix (A.8) is not 
defined. This is due to the fact that, as it has been explained in Section 2, the coef- 
ficients Q, have to vanish at r=O for 1>0. Taking into account this regularity 
property, according to the Galerkin approximation, we develop the quantities on a 
new set of independent polynomials P,(r) which vanishes at r = 0. We have chosen 
the set P,(r) to be 

Pi(r)= Ti+2(r)- Ti(r). 

Such a new basis will be call hereinafter a Galerkin Basis. 

(A.9 1 
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The -matrix of the operator AI is computed as 

(A,),;= (Ti, A,(Pj)). 

The system to be solved then reads 

1 (lfj - dt(Ai)v) Q,h = Source;,,- 

where I, is the transformation matrix between the Chebychev and Galerkin basis 

Two diSferent cases (= 1 and If 1 appear for ! odd too. Recahing, that for i odd. 
Tj(r) vanishes at r = 0, it can be seen that the operator d! apphed TO Ti gives a 
finite value for I= I. Consequently, the matrix 

is well defined. 
However, for I>, 3, (A i)Lj= ( Tj. A,[ P,,) is not defined. So, in analogy to the 

ken case, the quantities C&2 have to be expanded on a Gck&in Basis of odd. 
polynomials satisfying Pi(O) = 0 and dPJdr II = o = C. 

The boundary conditions are introduced by means of the ~-an 
approximation consist of replacing the last line of the matrix Ai by the tine sf 
coefficients (h,,) determined in such a way that 

, == tJ 

is satisfied. 
From a practical point of view, it should be noticed thar the operator A, can be 

reduce to a T-band matrix by means of very simple algebraic rna~~~~~atio~~s, For 
chat, we need a number of operations proportionaf to I, 

2. hzt’ersini? C$ rhe Laplncialr irl the 20 Case 

For the reasons explained in Section 3.1, the 2D quantities are expanded in 
Chebychev polynomials for the azimuthal part even in inverting rhe Eaplacian. 
These polynomials being not eigenvalues of the Laplacian. a more tricky method 
[or inverting this operator has to be developed. 

Note first that two different operators appear, namely, 

s2 22 1 ‘cos f3 i’ 
4,=;--i+--++ 7 

t 

cos 8 ? ‘1 
-- 

cr- r Sr r- sm $ + ZF + sin t; ?Q,j 
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for the scalar-type quantities, which are expanded in first kind Chebychev polyno- 
mials (cos 10) for the azimuthal part, and 

/$,g+??+- 1 /COS 6 a2 cos 0 a 

t 

I 

cr2 r & r2 
-+g+---- 
sin e sin 8 d6 sin’ 8 > 

(A.15) 

for vector-type quantities which are expanded in second kind Chebychev polyno- 
mials (sin RI). Note that the above definitions differ from those of the 3D case. In 
what follows, we will describe how we invert d,, the method used to invert d, 
being almost the same. 

The problem is to solve the system 

(l+d++!j.)) Q(r, 8) = Source(r, 0): 

where 

and 

o=dtx L ~0~9 a2 cod a x 
( (- 

-- 
r2 sin8+ZF+sin0# >> 

(A.16j 

(A. 17) 

(AX) 

After expansion of the quantity Q(r, 0) in Chebychev polynomials for 0, Eq. (A.16) 
becomes 

C (l+B)6,Z+>]Q,L(r)=Source,(r)Z (A.19) 

or, in matricial notation, 

(d/mnj + dt AInlr,jj Q, = Sourcenj, (A.20) 

where O,, is the matrix of the operator 0 in Chebychev representation. 
The task of solving this system can be greatly facilitated by using the properties 

of 0,. The linear combination 

@,n - @1+2.n (A.21 j 

reduces the matrix 0 to a 2-band matrix, the only non-vanishing elements being 
AI = O,, and B, = 01,[+ 1. 

The system (A.191 then reads 

(l+~+~)Q,ir)+(c,+~~~+~)Q,+,(r)=~,(r), (A.22) 
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where ;‘( and S, are the elements of the representation of the identity matrix and rhe 
source terms after the linear combination (A.21 j. 

The system of equations is solved by a descending recursion. The last equation 
reads 

f 1 +B+$ Q,(r,=SI.(r). 
\ 

where L is the maximum value of 1. This equation has the same structure as 
Eq. (A.4) and can be solved by means of the same technique. Once QL is known, 
QLP r is computed and so on. 

Note that the method described above can be generalised to more complicated 
operators such as, for instance, the 3D Laplacian or the operator ~2: - 
(sin d/r)(S/?B) which appears in Eq. (51). 

3. Solution of fife Poisson Equation 

Once the density has been expanded in spherical harmonks, 

the coeficients of the gravitational potential @,,,~r) must satisfy the Poisson 
equation 

/d2 

i 

26 ljl+l) 
,.,+y-- 

t r ar r2 
Q!,,(r) = -47&p,,(r) (8.24; 

and the boundary conditions @ + 0 as r ---) ~1. In our case, the boundary conlitions 
have to be imposed at I’ = 1. Consequently, we have to find an internal solution 
matching an external one which satisfies the boundary conditions at infinity. l%ote 
that, in our case, the esternal solution is a vacuum solution. 

We first find a particular internal solution Q0 by inverting the Laplacian in 
Eq. (A.24) with the technique as described above. The genera! soiutien is 
@ = Q0 + @,,- where we have assumed Go = 0 for r > 1 and where @,, is a harmonic 
function which has the coefficients 

and 

We then determine the coefficients ‘xl and j?, in such a way that @ is Cl-class. 
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